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In this paper, we investigate the linear stability of oscillating zonal flows on the
equatorial β-plane in the presence of fully three-dimensional disturbances. To exclude
inflection point effects, we focus on the simplest case of a linear meridional shear
with time-mean and oscillating components. For purely oscillatory background flows
we find that in addition to resonant excitation of ‘additive’ type that occurs in the
zonally invariant case, resonant excitation of ‘difference’ type is also possible. For
flows with an oscillatory shear superimposed on an unstable time-mean shear it is
shown that while the oscillatory shear has a stabilizing influence on disturbances with
a small zonal wave number k, at higher k the effect of the oscillating shear diminishes
and can even be destabilizing. Overall, a small oscillatory shear tends to reduce
the fastest growth rate in the system and pushes the dominant k to higher values.
Calculation of dominant zonal and vertical modes shows that the zonally asymmetric
modes dominate a large portion of the parameter space, especially at high time-mean
background shear and low oscillatory shear. As a result, the dominant vertical mode
can have a somewhat larger vertical scale than in the zonally invariant case. At
intermediate values of the time-mean shear the growth rate is relatively flat with
respect to the zonal mode number, with maximum growth rate occurring in bands of
high and low k. We have uncovered a rich assortment of vertical and zonal modes
which are likely to play a role in the nonlinear evolution of equatorial flows.

1. Introduction
In addition to the familiar barotropic/baroclinic instabilities of a zonal mean flow,

equatorial ocean currents are also subject to instabilities that favour much smaller
vertical scales of the order of tens of metres but with relatively large meridional
and zonal extents. A manifestation of such small vertical scale (SVS) features in the
equatorial thermocline is the presence of the interleaving of water masses (see, for
example, Richards & Banks 2002; Lee & Richards 2004).

There are a number of ways in which the instability of a ‘steady’ zonal current
with a large vertical scale can account for these SVS features. Any inviscid zonal flow
that has a non-zero meridional shear at the equator is unstable to inertial instability
(II; e.g. Dunkerton 1981). Apart from II, there exist other types of SVS-favouring
instabilities. Taniguchi & Ishiwatari (2006) identified these instabilities as resonances
between equatorial Kelvin modes and continuous modes and those between Kelvin
modes and westward mixed Rossby–gravity (MRG) modes. The resonances favour
zonally asymmetric disturbances.
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Unlike the steady background flows studied in the aforementioned papers, the
realistic large vertical scale flows in the equatorial ocean are time-dependent. As
well as having a system of vigorous zonal jets with meridional and vertical shears,
the upper equatorial ocean is influenced by equatorially trapped waves (Philander
1990). Here we study the stability of zonal equatorial currents that are oscillatory in
time. We extend the study of Natarov, Richards & McCreary (2008), in which the
attention was confined to zonally symmetric modes, to the analysis of fully three-
dimensional disturbances. In § 2 we present the governing equations, their projection
onto vertically and zonally propagating waves and the method used to analyse their
stability. Sections 3 and 4 deal with the inviscid dynamics of a projection onto a
single vertical mode. Our previous work on zonally symmetric instabilities has shown
that qualitatively different regimes arise in cases with large steady shear and a small
steady shear. We therefore study these two cases separately. Section 3 is focused on
the stability of a weak purely oscillatory zonal flow (no time-mean shear), and in
§ 4 we describe the effect of oscillatory shear on an unstable time-mean shear flow.
Section 5 combines the results for different vertical modes and describes dominant
vertical and zonal scales in the parameter space of the magnitudes of the time-mean
and oscillatory shears. Section 6 presents the summary and discussion.

2. The governing equations
2.1. Dimensional equations

Let t denote time and x the zonal (eastward), y the meridional (northward) and
z the vertical (upward) coordinates. We consider a zonal flow U (y, t), i.e. zonally
uniform, on the equatorial β-plane. The domain is periodic in the zonal (with the
length Lx) and vertical (with the height H ) directions and extends from −∞ to +∞
in the meridional direction. The background stratification is assumed constant and
characterized by the buoyancy frequency N . The linear evolution of a disturbance
(u, v, w, ψ, b), where u, v and w are the zonal, meridional and vertical components
of velocity respectively, ψ the pressure divided by a reference density ρ∗ and b the
buoyancy associated with a perturbation, is then governed by the set of equations(

∂

∂t
+ U

∂

∂x

)
u +

(
∂U

∂y
− βy

)
v +

∂ψ

∂x
= 0, (2.1a)

(
∂

∂t
+ U

∂

∂x

)
v + βyu +

∂ψ

∂y
= 0, (2.1b)

∂ψ

∂z
− b = 0, (2.1c)

(
∂

∂t
+ U

∂

∂x

)
b + N2w = 0, (2.1d)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.1e)

where a hydrostatic balance has been assumed. The boundary conditions are chosen
to be periodic in the zonal and vertical directions. Such choice simplifies the analysis
without restricting the generality of the approach. In the meridional direction the
disturbances are required to decay to zero as |y| → ∞.
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Following a standard procedure to reduce the system (2.1) to a set of three
prognostic equations, we obtain

∂w

∂z
= −

(
∂

∂t
+ U

∂

∂x

)
1

N2

∂b

∂z
(2.2)

and

∂b

∂z
=

∂2ψ

∂z2
(2.3)

after differentiating (2.1d) and (2.1c) with respect to z. Combining (2.2) and (2.3) to
form

∂w

∂z
= −

(
∂

∂t
+ U

∂

∂x

)
1

N2

∂2ψ

∂z2
, (2.4)

we substitute the result into the continuity equation (2.1e) to obtain a prognostic
equation for ψ: (

∂

∂t
+ U

∂

∂x

)
∂2ψ

∂z2
− N2

(
∂u

∂x
+

∂v

∂y

)
= 0. (2.5)

The equations (2.1a), (2.1b) and (2.5) form a system of three prognostic equations.
Taking advantage of the governing equations being homogeneous in x and z, we

seek wavelike solutions of the form

φ(x, y, z, t) =
∑
k,m

φ̂km(y, t)ei(kx+mz), (2.6)

where k is the zonal wave number; m is the vertical wave number; and φ stands for
u, v or ψ . For a particular (k, m) mode we thus obtain(

∂

∂t
+ ikU

)
ûkm +

(
∂U

∂y
− βy

)
v̂km + ikψ̂km = 0, (2.7a)

(
∂

∂t
+ ikU

)
v̂km + βyûkm +

∂ψ̂km

∂y
= 0, (2.7b)

(
∂

∂t
+ ikU

)
ψ̂km + c2

m

(
ikûkm +

∂v̂km

∂y

)
= 0, (2.7c)

where c2
m = N2/m2.

2.2. Non-dimensionalized equations

We next non-dimensionalize the system (2.7) by introducing a characteristic time
scale. For the purpose of our study, the natural time scale is provided by the inverse
of the equatorial inertial frequency ωm,i =

√
βcm for a given vertical wavenumber m.

Since the equatorial inertial frequency determines the equatorial Rossby radius of
deformation Rm =

√
cm/β , it also sets a natural horizontal spatial scaling.

In the remainder of this section, we will omit the subscripts k and m that refer to
a specific mode. To summarize, the non-dimensionalized independent variables are

t̃ =
√

βc t, x̃ =
x

R
, ỹ =

y

R
. (2.8)

After scaling the velocities with c,

{Ũ , ũ, ṽ} =
1

c
{U, u, v}, (2.9)
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and ψ with c2,

ψ̃ =
ψ

c2
, (2.10)

the set of the governing equations (2.7) becomes (with tildes omitted)(
∂

∂t
+ ikU

)
û +

(
∂U

∂y
− y

)
v̂ + ikψ̂ = 0, (2.11a)

(
∂

∂t
+ ikU

)
v̂ + yû +

∂ψ̂

∂y
= 0, (2.11b)

(
∂

∂t
+ ikU

)
ψ̂ +

(
ikû +

∂v̂

∂y

)
= 0. (2.11c)

Apart from the background zonal velocity U , solutions to the system (2.11) only
depend on the non-dimensionalized zonal wavenumber k. As in Natarov et al. (2008),
our choice of the background zonal velocity is

U (y, t) = (Λ̄ + δΛ cos Ωt)y, (2.12)

i.e. a combination of a background time-mean shear Λ̄ and an oscillating shear of
magnitude δΛ and frequency Ω . Notice that all free parameters in the expression for
the background velocity (2.12), Λ̄, δΛ and Ω , are non-dimensionalized by dividing by
the inertial frequency

√
βc. The complete sweep of the four-dimensional parameter

space (k, Λ̄, δΛ, Ω) is out of the question, and we therefore have to be selective in
our analysis.

2.3. Floquet analysis

To perform a numerical stability analysis of the system, the governing equations
(2.11) are discretized using finite differencing on a staggered grid in the meridional
coordinate y. The grid points for the velocity fields u, v are located in between
the points for the pressure ψ . Meridional walls are introduced at the northern and
southern boundaries of the computational domain, far enough so as not to unduly
influence the results. The appropriate boundary condition in this setting is a no
normal flow (v =0) requirement at each wall. Ghost grid points slightly beyond the
physical domain have to be introduced for ψ . The values of ψ at the ghost grid points
are updated by keeping the zonal flow at the boundaries in geostrophic balance. This
sets the meridional velocity tendency ∂v/∂t to zero at the boundaries.

To find instabilities the resulting system is subjected to a Floquet analysis. Column
vectors in the monodromy matrix represent the projections of the fields onto a basis of
Hermite functions for each field. The evolution of the monodromy matrix is calculated
using a fourth-order Runge–Kutta method. After propagating the monodromy matrix
for one period of the background flow oscillation, the eigenvalues and eigenvectors
of the resulting Floquet matrix are calculated using an inbuilt MATLAB eigensolver.
Meridional resolution of 64 grid points suffices for all the experiments described below,
as the results are essentially unchanged by doubling the resolution. Simulations with
66 time steps per forcing period produce essentially the same results as simulations
with 1000 time steps per forcing period.

3. Purely oscillatory shear flows
The stability of purely oscillatory flows in the context of the two-dimensional

vorticity equation has recently been addressed by Poulin, Flierl & Pedlosky (2003).
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Figure 1. The collective growth rate for zonally symmetric (k = 0) modes (black line) and
k =0.1 modes (grey lines) as a function of the background frequency Ω . The four black spikes

shown correspond to the cases Ω = 1+
√

3, Ω =
√

3+
√

5, Ω =
√

5+
√

7 and Ω =
√

7+3. Note

grey spikes in the vicinity of the natural frequencies of free equatorial waves at Ω = 1,
√

3,
√

5,
etc. The magnitude of the oscillatory shear δΛ is set to 0.05.

One of the interesting findings of that paper is that if the time-periodic background
velocity U (y, t) can be represented as a separable function of t and y, as we have
here, then the flow is stable. To be unstable, the background zonal velocity has to be
comprised of at least two distinct oscillating out of phase profiles.

Our numerical calculations show that in the case of the dynamics studied here such
a requirement on the background flow for instability can be relaxed, and we can safely
restrict attention to the background flows of the form (2.12). The Poulin et al. (2003)
results are recovered in the context of our model in the horizontally non-divergent
limit cm → ∞.

Here we set Λ̄ =0, fix δΛ at a small value of 0.05 and study the changes in the
stability of the modes with different k, as we vary the frequency of the background
flow oscillation. Along with the dominant disturbance, we also keep track of the next
few Floquet vectors. This helps in the interpretation of the changes in the dominant
modes throughout the parameter space.

To investigate parametric excitation of the equatorial waves, it is convenient to first
revisit the zonally symmetric case k = 0. The system only possesses a discrete spectrum
consisting of frequencies 1 (MRG wave),

√
3,

√
5, etc. (inertia–gravity waves) in this

case. Figure 1 shows the collective growth rate of k =0 modes as a function of the
forcing frequency (thick black curve). The four spikes shown correspond to the cases
Ω = 1 +

√
3, Ω =

√
3 +

√
5, Ω =

√
5 +

√
7 and Ω =

√
7 + 3. This is consistent with the

multiple-scale analysis of d’Orgeville & Hua (2005), who found that a small linear
oscillating shear will only excite modes with adjacent meridional mode numbers,
whose natural frequencies add up to the frequency of the background flow oscillation.
With a non-zero k the spectrum of waves is considerably richer. Corresponding to each
meridional mode � > 0, there now exist two gravity waves and a Rossby wave, all with
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distinct frequencies. The MRG waves (with � =0) acquire two distinct frequencies
as the zonal symmetry is relaxed. In addition, for each k there is now an equatorial
Kelvin wave. The grey curve in figure 1 shows the growth rate as a function of Ω for
a small value of k ( = 0.1). While the frequencies of the waves are not substantially
altered by such a small k, we can clearly see a dramatic difference in the stability of
the system. A large number of additional spikes appear. In particular, unlike in the
zonally symmetric case, the background flow oscillations are now capable of exciting
destabilizing waves that have frequencies close to the background frequency Ω , i.e.
at Ω ≈ 1,

√
3,

√
5, etc. The idea that first comes to mind is that these new instabilities

are due to the interaction of these waves with Kelvin or Rossby waves, which have
small frequencies at small k.

To test this conjecture we compare the meridional structure of the unstable Floquet
vectors for the Ω =1 +

√
3 spike in a zonally symmetric case, the same spike but

for k = 0.1 and the new spike for k = 0.1 that is located close to Ω = 1 which has no
counterpart in a zonally symmetric case. The meridional structure of the dominant
disturbance in the zonally symmetric case was first calculated by d’Orgeville & Hua
(2005). The structure of the perturbation meridional component of velocity v̂ of the
unstable disturbance at Ω =1+

√
3 is a superposition of the zeroth and first Hermite

functions. There are two Floquet vectors corresponding to this mode, with similar
meridional structure but with complex conjugate growth rates. These correspond to
an upward-propagating and a downward-propagating disturbance.

For Ω ≈ 1 +
√

3 and small k there are now two spikes of similar magnitude in the
vicinity of the background frequency, corresponding to the first two fastest growing
Floquet vectors, due to the asymmetry between westward- and eastward-propagating
waves. Together with slightly different frequencies, the unstable disturbances exhibit
slightly different growth rates. However, the meridional structure of the dominant
disturbances is very similar to that in the zonally symmetric case.

Finally, for Ω ≈ 1 and small k, the first two fastest growing Floquet vectors no
longer have similar growth rates. Instead, the fastest growing Floquet vector has a
meridional structure comprised mostly of a projection on the MRG wave but with
a noticeable projection on the equatorial Kelvin wave as well. The second fastest
Floquet vector has a much smaller growth rate and projects almost exclusively onto
the equatorial Kelvin wave, with some contribution from the MRG wave. The above
conjecture therefore holds.

If we assume that the zonally asymmetric instabilities must satisfy the same resonant
combination of ‘additive’ type (Ω = |ω′ | + |ω′′ |), as the zonally symmetric instabilities,
then there still remain unexplained spikes in figure 1. For example, a spike around
Ω ≈ 0.9 cannot be explained by any resonant combination of additive type, as the
frequencies of the gravity waves (including the MRG wave) are larger than 0.9.
The non-dimensional frequencies of the Rossby waves and the Kelvin wave are
approximately equal to |k| for small k and are too small to add up to 0.9 in a
low-order interaction. This motivates the question as to whether these spikes can be
explained by appeal to resonant combinations of the ‘difference’ type (Ω = |ω′ |− |ω′′ |).
For example, the spikes that are very close to the natural frequencies of the normal
modes (such as around Ω =1) on a closer examination are located at frequencies
slightly smaller than the natural frequencies. They can be accounted for by resonant
combinations of difference type between a gravity wave (or an MRG wave) and a
Rossby or the Kelvin wave, which have very small frequencies at small k. But why
do such resonances, of difference type, only occur in the zonally asymmetric case?
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And what determines the growth rates and the stability boundaries? To answer these
questions we turn to a multiple-scale analysis.

3.1. Multiple-scale analysis

It is convenient to rewrite the governing system (2.11) for a fixed k and m in the form
of a Schrödinger equation:

i
∂

∂t
|φ〉 = (H0 + δΛH1 cosΩt) |φ〉 , (3.1)

where |φ〉 is a representation of the solution [û, v̂, ψ̂]T (y, t) and H0 and H1 are
the linear operators describing the steady and the oscillatory parts of the equation,
respectively.

It is convenient to select a representation in which an arbitrary disturbance can be
represented as a series expansion in terms of the eigenvectors of the operator H0:

H0 |j〉 = ωj |j〉 , (3.2)

where j ranges over the index set

{K, M−, M+, R1, G
−
1 , G+

1 , . . . , R�, G
−
� , G+

� , . . .}, (3.3)

where K corresponds to the Kelvin wave, M− and M+ to the westward and eastward
MRG waves respectively, R� to the meridional-mode-� Rossby wave and G−

� and
G+

� to the westward and eastward meridional-mode-� gravity waves respectively.
Note that since we are confining ourselves to positive zonal wavenumbers k, the
frequencies ωj of westward-propagating waves are negative. The eigenvectors |j〉
encode the meridional structure of the fields corresponding to the given equatorial
wave j and are functions of y only (see the Appendix for explicit expressions).

The completeness of waves (3.3) on an equatorial β-plane is well established (e.g.
Ripa 1982). Therefore any evolving disturbance |φ〉 can be represented as

|φ〉 (y, t) =
∑

j

αj (t) |j〉 (y). (3.4)

Substituting the expansion (3.4) into the Schrödinger equation (3.1) results in a system
of ordinary differential equations (ODEs):

i
d

dt
αj = ωjαj + δΛ cosΩt

∑
n

γjnαn, (3.5)

where

γjn = 〈j | H1 |n〉 . (3.6)

Thus, the only inputs from our β-plane model needed for further analysis are the
spectrum of H0 and the coefficients γjn . Both are calculated and described in the
Appendix.

The system (3.5) can be further simplified by substituting

αj (t) = Aj (t)e
−iωj t . (3.7)

The resulting governing equation for Aj is

i
d

dt
Aj = δΛ cosΩt

∑
n

γjnAn exp[it(ωj − ωn)]. (3.8)
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Since cos Ωt =(eiΩt + e−iΩt )/2, (3.8) can be rewritten as

i
d

dt
Aj =

δΛ

2

∑
n

γjnAn{exp[it(ωj − ωn + Ω)] + exp[it(ωj − ωn − Ω)]}. (3.9)

Assuming δΛ � 1, we introduce a slow time T = δΛt and a fast time τ = t and
replace the time derivative d/dt with ∂/∂τ + δΛ∂/∂T in the governing equation (3.5).
We seek asymptotic solutions

Aj (t; δΛ) ∼ Aj (τ, T ; δΛ) ∼ A0
j (T ) + δΛA1

j (τ, T ) + O(δΛ2). (3.10)

The zeroth-order O(δΛ0) equations are trivially satisfied, and at the first order O(δΛ)
we have

i
∂

∂τ
A1

j = −i
dA0

n

dT
− 1

2

∑
n

γjnA
0
n

(
ei(Ω+ωj −ωn)τ + ei(−Ω+ωj −ωn)τ

)
. (3.11)

The terms that may contribute to the secular forcing on the right-hand side of (3.11)
are those for which Ω + ωj − ωn = 0 or −Ω + ωj − ωn = 0. Thus, a given wave j may
potentially be destabilized by two waves n1 and n2, one with ωn1

= ωj + Ω and the
other with ωn2

=ωj −Ω . While it is possible for some rare combinations of parameters
for n1 and n2 waves to occur simultaneously, in general only one of these waves will
be involved in the resonance with the wave j . We will therefore focus on the two-wave
excitations. Notice that ωj and ωn always enter the resonance condition multiplied
by opposite signs. Thus, resonances of ‘additive’ type correspond to the case in which
ωj and ωn have opposite signs, while resonances of ‘difference’ type correspond to
the case in which ωj and ωn have the same sign. Assume that ωj − ωn − Ω = 0. Then
ωn − ωj + Ω = 0, and the amplitudes of the waves j and n are governed by

i
dA0

j

dT
=

1

2
γjnA

0
n, (3.12a)

i
dA0

n

dT
=

1

2
γnjA

0
j . (3.12b)

Combining the two first-order equations (3.12a, b) into one second-order equation
yields

d2A0
j

dT 2
+

1

4
γjnγnjA

0
j = 0. (3.13)

The behaviour of the system depends on the sign of γjnγnj . If γjnγnj is negative then
there is exponential growth at the rate given by

σ =
√

−γjnγnj/2. (3.14)

If γjnγnj is positive, the wave amplitudes will slowly vacillate with the frequency√
γjnγnj/2.
For zonally symmetric waves it can be shown that the instability condition γjnγnj < 0

can only be satisfied by waves with frequencies of opposite signs. Therefore, only
resonances of additive type are possible. One may conjecture that when the amplitude
of the background flow oscillation is large enough, the resonances of difference type
may occur in the zonally symmetric case as well, through parametric instability of
the amplitude equation (3.13). Our numerical calculations show that this is indeed
the case.
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Ω Pair σms , 10−3 σnum , 10−3

0.92 {M−, R1} 4.02 4.01
0.95 {K,M+} 3.74 3.73

1.70 {G−
1 , R2} 2.99 2.98

2.21 {G−
2 , R3} 2.62 2.61

2.28 {R1, G
+
2 } 2.21 2.17

2.62 {G−
3 , R4} 2.41 2.36

2.67 {R2, G
+
3 } 2.18 2.07

2.70 {M−, G+
1 } 6.49 6.49

2.77 {M+, G−
1 } 6.93 6.92

2.98 {G−
4 , R5} 2.26 2.14

3.02 {R3, G
+
4 } 2.11 1.89

. . .

Table 1. Forcing frequency Ω at which instability occurs, pairs of waves excited, and growth
rates from the multiple scales calculations, σms , and numerical Floquet analysis, σnum .

Parameter Value Interpretation

β 2.29 × 10−11 m−1 s−1 gradient of Coriolis parameter
N 0.015 s−1 background buoyancy frequency
g 9.78 ms−2 gravitational acceleration
ρ∗ 1020 kgm−3 reference density
T 22 days forcing period
Lx 14, 443 km domain length in zonal direction
Ly 500 km domain meridional half-width
H 200 m domain height
ν 10−6 m2 s−1 vertical viscosity

Table 2. The parameters for the dimensional model.

As an example of a zonally asymmetric case, we consider an interaction of a Kelvin
wave with an MRG wave. It can be shown that

γKM γMK = −k
ωM

|ωM |
1

2

√
1 − sM

2 − sM

(3.15)

(see the Appendix for notation). Instability occurs if ωM > 0. Since ωK > 0, this
instability corresponds to a resonance of difference type. This supports our conjecture
that resonances of difference type as well as resonances of additive type occur in the
zonally asymmetric case. The explicit algebraic expressions for other combinations of
waves can be easily derived from the equations given in the Appendix by specifying
the types of waves. Table 1 summarizes the results for the first few peaks by showing
the growth rate σms given by (3.14) and excited wave pairs for the given forcing
frequency Ω . In terms of the magnitude of the growth rates there are two types of
instabilities. The first has relatively high growth rates (exceeding 6×10−3). The growth
rate of this type of instability changes only weakly in magnitude as the meridional
mode number of the interacting waves is increased. The lowest mode instabilities of
this kind are {M−, G+

1 } and {M+, G−
1 }. At higher meridional modes, these instabilities

correspond to the {G∓
� , G

±
�+1} pairs. Note that all of them are a direct continuation to

non-zero k of the additive type instabilities found in d’Orgeville & Hua (2005). Each
k = 0 spike splits in two at non-zero k.



68 A. Natarov and K. J. Richards

The second set of instabilities has growth rates considerably smaller than those
of the first kind, with growth rate decreasing as meridional mode number increases
(unlike the instabilities of the first kind). The lower mode instabilities for the second
family of spikes are due to a collective excitation of a {K, M+} and an {R1, M

−} pair.
Both of these instabilities are of difference type. At higher meridional mode numbers
the second family includes {R�, G

−
�−1} and {R�, G

+
�+1} pairs; the first is of a difference

type, while the second is of an additive type.
The last column in table 1 shows the growth rates σnum obtained using the Floquet

analysis (see figure 1). The growth rates obtained via the method of multiples scales
approximate the numerically derived growth rates reasonably well, especially for
interactions not involving Rossby waves with meridional mode numbers higher than
1 (σms being within less than 1 % of σnum). Rossby waves with higher meridional mode
numbers have frequencies comparable to, or even smaller than, the slow time scale.
The decrease in accuracy of the method of multiple scales for cases involving these
waves is therefore not surprising. The results still agree to within 10 % of accuracy
with the numerical calculations, and the method of multiple scales can still be used
to interpret the physics of the wave excitation. At higher δΛ the accuracy of the
method of multiple scales for the interactions involving Rossby waves deteriorates
even further. However, for interactions that only involve gravity and MRG waves,
the method of multiple scales remains very accurate, as long as δΛ is less than unity.

4. Oscillatory shear combined with a steady shear flow
Here we consider the combination of an oscillatory shear superimposed on a steady

background flow. When the steady background flow is stable, one may expect that
our analysis from the previous section can be directly carried over with some modest
modifications. Although the normal modes are no longer computable analytically,
a combination of a multiple-scale approach with a numerical calculation of the
coefficients may provide illuminating results. This is a subject of a further study.
Here, we confine ourselves exclusively to numerical calculations and concentrate on
studying the effects of the oscillatory shear on an ‘unstable’ steady background flow.

Earlier work on barotropic oscillating shear flows (e.g. Poulin et al. 2003) has
shown that oscillatory shear tends to stabilize unstable steady background shear
flows. In the context of equatorial dynamics, the study of Natarov et al. (2008) of a
zonally symmetric flow has shown that a small oscillatory shear superimposed on an
inertially unstable steady flow also stabilizes the flow to II. At larger values of the
oscillatory shear the dominant instability becomes of ‘mixed type’ (mixed instability,
MI), using the terminology of Natarov et al. (2008). The MI modes are characterized
by the ‘parametric sub-harmonic instability’ (PSI)-like oscillatory temporal behavior,
combined with enhanced ‘episodic’ growth through an II-like mechanism. In this
section we generalize the analysis to three dimensional disturbances.

As an example of the dynamics of a zonally asymmetric case, figure 2 compares
the growth rates for an unstable steady shear flow (Λ̄ = 2.5) with and without
an oscillating shear (with δΛ = 1.0 for ‘small’ and δΛ = 2.0 for ‘large’ magnitude), as
functions of k. The background frequency Ω is set to

√
7. Notice that strong instability

is confined to zonal wavenumbers k < 0.4, i.e. zonal wavelengths substantially larger
than the equatorial radius of deformation. The dominant zonal wavenumber k ≈ 0.2
corresponds to a zonal wavelength five times the Rossby radius of deformation. While
at small k (k < 0.3) the stabilizing influence of the small oscillatory shear is clear, for
higher k the influence is less marked. For high enough k (k > 0.37) the oscillation can
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Figure 2. Comparison of the growth rate as a function of zonal wavenumber k in a steady
shear case Λ̄= 2.5 (black lines) and a steady shear of the same magnitude combined with an
oscillating shear (grey lines) of (a) small (δΛ= 1.0) and (b) large (δΛ= 2.0) magnitudes. The
solid lines correspond to the fastest growing disturbance, and the dashed and dot-dashed lines
correspond to the second and third Floquet vectors, respectively.

actually act to promote the instability (figure 2, when the grey curve is higher than
the black for a given k).

As for the second and third Floquet vectors, figure 2 shows that they have larger
growth rates in the case with oscillatory shear. While there are second and third
unstable modes in the steady case, their growth rates are small, especially at small k.
The addition of the oscillatory shear introduces the possibility of PSI and MI, with
growth rates considerably larger than the growth rate of the second and the third
fastest growing modes of the purely steady shear flow (compare the grey and black
dashed and dot-dashed curves in figure 2). For the case described here the instabilities
that are due to the oscillatory shear are of the mixed type.

As the magnitude of the oscillatory shear δΛ is increased, the rates associated with
the steady-state instability (II and its relatives) continue to drastically diminish at
small k but stay about the same magnitude at higher k. The peak of the II mode
has shifted from 0.08 at δΛ = 1.0 to 0.12 at δΛ = 2.0. At the same time the MI
modes acquire higher growth rates and at some point begin to exceed the growth rate
associated with the steady-state instability. At this particular forcing frequency the
peak in the MI mode is at k = 0. This appears to be the case generally for the MI
modes. At smaller Λ̄ the maximum growth rate induced by the oscillatory shear may
shift to asymmetric modes but still with a small k (see next section).

In summary, similar to the zonally symmetric case, the parameter space for zonally
asymmetric modes can be separated into regions dominated by PSIs, steady-state
instabilities and MIs (see Natarov et al. 2008). However, in contrast to the zonally
symmetric case, at sufficiently high k oscillatory shear can enhance the growth rates
associated with the unstable modes of the steady flow. The oscillatory shear thus
provides an additional mechanism for favouring the zonally asymmetric modes. At
the same time, at lower k, a moderate oscillatory shear will replace the unstable modes
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of the steady shear flow with modes whose temporal behavior resembles that of MIs.
In a large part of the parameter space there will co-exist, with similar growth rates,
high k modes that are due to the instability of the steady background flow and low-k
modes that are excited through MI, both with the same vertical scale.

5. Dominant modes in the continuously stratified ocean
In the previous sections we have been concerned essentially with the inviscid

dynamics of a single vertical mode. We will now determine the dominant modes of
instability globally in the vertical and zonal wavenumber spaces.

The non-dimensionalization in the previous sections was carried out for a given
vertical wavenumber. To look at all vertical modes at once we need to return to the
dimensional representation. In this section we solve the problem in a domain that is
periodic in the vertical and zonal directions. The height of the domain is set at H

and the zonal length at Lx . Because we are using a finite-difference scheme in the
meridional direction, the meridional extent of the domain has to be limited. In the
meridional direction the domain is centred on the equator and has the half-width
of Ly , large enough as not to affect the outcome of calculations. For the purpose
of easy comparison with the results, described in Natarov et al. (2008), we set the
dimensional parameters to the same values as in that paper, including the frequency
of the background flow oscillation. The list of parameters is summarized in table 2.
Also notice that we now include vertical viscosity.

Figure 3 shows the dominant growth rate and the associated dominant zonal mode
number k∗ = kLx/(2π) and vertical mode number m∗ = mH/(2π). Note that we have
chosen to present the dominant vertical and zonal modes as pixels at the discrete
values of (Λ̄, δΛ) used in the calculations. This form of presentation gives a clearer
indication of the rapidly changing dominant modes in the (Λ̄, δΛ) space than a
contour plot. The upper panel shows the dominant vertical mode number m∗ and is
similar in character to the zonally invariant case (see figure 6 of Natarov et al. 2008).
As before, the regions of small Λ̄ are dominated by the low-m∗ PSIs. The dominant
zonal mode number k∗, shown in figure 3(b), however, is high and varies smoothly
along the Λ̄-axis. The dominance of the zonally asymmetric mode can be understood
using the results of § 3 as follows: In the region around δΛ ≈ 1.5 × 10−6 s−1 the
dominant vertical mode is m∗ =8, and in terms of non-dimensionalized parameters
we have Ω̃ =

√
8 ≈ 2.8 and

k̃ =
2π

100

k∗
√

m∗
≈ 0.1.

The non-dimensionalized δΛ is approximately 0.2. Figure 1 shows that there are a
number of spikes in the vicinity of Ω = 2.8, with the tallest one corresponding to a
zonally asymmetric {M+, G−

1 } wave pair.
Large Λ̄ and small δΛ are dominated by the high-m∗ steady-state instabilities

(II and its relatives). It is interesting to note that the physical mechanism of the
gravest steady-state instability varies along the (δΛ = 0)-axis in our experiments.
Generalizing the parameter E of Taniguchi & Ishiwatari (2006) to a continuously
stratified ocean, we introduce the parameter Em = Λ̄4/(βcm)2. At Λ̄ =1.3 × 10−6 s−1,
the dominant vertical mode corresponds to m∗ = 8, while at higher Λ̄ it jumps to
m∗ � 11. Following Taniguchi & Ishiwatari (2006), we find that for Λ̄ =1.3 × 10−6 s−1

the parameter log Em is equal to 0.43 < 1. This implies that the dominant instability
in this regime is due to the resonance between the equatorial Kelvin modes and
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Figure 3. Dominant (a) m∗ and (b) k∗ modes (colour) and the dominant growth rates
(contour) in the dimensional (Λ̄, δΛ)-parameter space.

continuous modes (Natarov & Boyd 2001). At higher values of Λ̄, the parameter
log Em exceeds 1, and the dominant instabilities are a direct continuation of II to the
zonally nonsymmetric case (Dunkerton 1983).

Regardless of the instability mechanism, a small oscillatory shear has a stabilizing
influence of the maximum growth rate, similar to the zonally symmetric case and
as indicated by the the analysis in § 4. One important difference from the zonally
symmetric case is the lack of disparity in dominant vertical scales between steady-state
instabilities and MIs. This is a result of the favoured zonal scale. The lower panel of
figure 3 shows that the dominant steady-state instabilities are now zonally asymmetric.
The dominant zonal mode ranges from k∗ = 25 at Λ̄ =1.3×10−6 s−1, corresponding to
a wavelength of 555 km, to k∗ = 12 at Λ̄ =2×10−6 s−1, corresponding to a wavelength
of 1204 km, and favours a substantially larger vertical scale than the k∗ = 0 mode.

For larger δΛ (>1.5 × 10−6 s−1) the dominant instabilities are of the mixed type.
Figure 3(b) shows that MIs still favour zonally symmetric modes (as discussed in
§ 4), and therefore vertical dominant modes in this region of the parameter space are
similar to those found by Natarov et al. (2008).
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Figure 4. Log 2 of the growth rate as a function of Λ̄ and zonal mode number of the
disturbance, k∗, for δΛ= 0.8 × 10−6 s−1.

For smaller values of Λ̄ the growth rate is relatively flat with respect to k∗ but is
such that we find the maximum growth rate occurring in bands of high and low k∗ as
Λ̄ is varied. Figure 4 shows, as an example, a slice at δΛ = 0.8 × 10−6 s−1 through the
(Λ̄, δΛ, k, m) space. As Λ̄ varies, so does the dominant zonal mode, with relatively
sharp transitions at Λ̄ = 0.8 × 10−6 s−1 and Λ̄ = 1.4 × 10−6 s−1. Similar behaviour is
found for other values of δΛ. In terms of the vertical scales this region of the
parameter space is dominated by the low vertical modes with PSI as the only possible
instability mechanism. The alteration of bands is thus due to different zonal modes
satisfying the resonance conditions at different values of Λ̄. The small differences in
growth rates between modes indicate that nonlinear effects need to be considered in
order to determine the scales that dominate at finite amplitude.

6. Summary and discussion
In this paper, we have addressed the question of the stability of oscillating zonal

shear flows on the equatorial β-plane to fully three-dimensional disturbances. For
purely oscillatory shear flows (no time-mean shear), we have established, through
both numerical Floquet analysis and application of the method of multiple scales,
that in addition to the resonant excitation of ‘additive’ type, described for the zonally
symmetric case by d’Orgeville & Hua (2005), resonant excitations of ‘difference’ type
are also possible. We have also described new instabilities, compared to the zonally
symmetric case, that are introduced by the existence of Rossby and Kelvin waves in
the zonally asymmetric case. These instabilities are especially interesting because they
are due to resonances between waves with very different frequencies.

We have established that while oscillatory shear tends to stabilize an unstable steady
shear flow for disturbances with a low zonal wavenumber k (similar to many previous
studies on oscillatory flows of many sorts), for higher k the effect of oscillatory shear
is less significant and may even increase the growth rates. Combining our findings for
high and low zonal wavenumbers, we note that a small oscillatory shear tends to push
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the dominant zonal wavenumbers to higher values than a purely steady flow with
the same time-mean shear. On the other hand, oscillatory shear introduces modes
unstable to PSI. As the oscillatory shear is increased, these modes may overtake the
steady-state modes at low k and, at some value of δΛ, reach growth rates comparable
to those of steady-state instabilities with a high k.

The co-existence, of high- and low-k modes, with similar vertical scale and growth
rates but excited through different mechanisms, poses intriguing questions about the
nonlinear evolution of the system in this parameter regime. These questions are
beyond the scope of the present paper and the subject of future investigation.

An interpretation of our findings in the context of a continuously stratified
equatorial ocean model suggests that the stability diagram in the (Λ̄, δΛ)-parameter
space has a dominant vertical mode structure generally similar to that of a zonally
symmetric case. An important difference is in the lack of disparity between the vertical
scales selected by steady background state instabilities and MIs. The difference is due
to the zonal scale selection. For a wider range of the time-mean shear Λ̄, the growth
rates of different zonal modes are very flat. The rich assortment of vertical and zonal
modes we have uncovered for three-dimensional disturbances of zonally symmetric
equatorial flows are likely to influence the nonlinear evolution and equilibration of
the flow. This again points to nonlinear simulation as the only possible path towards
resolving the question of dominant scales.

This work was supported by the NSF under grant number OCE 03-26630 and the
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) IPRC/SOEST
publication number 574/7605.

Appendix. Calculation of the interaction coefficients γjn

The meridional structure functions for an equatorial wave j can be found in Ripa
(1982) and are given by

|j〉 (y) =

⎛
⎜⎝

ûj (y)

v̂j (y)

ψ̂j (y)

⎞
⎟⎠ =

⎛
⎜⎝

i2−1/2
(
b+

j ϕ�j +1 + b−
j ϕ�j −1

)
bjϕ�j

i2−1/2
(
b+

j ϕ�j +1 − b−
j ϕ�j −1

)
⎞
⎟⎠ . (A 1)

In this expression, ϕ� is the normalized Hermite function of order �, and the coefficients
b are given by

b+
K = 1, bK = 0, b−

K = 0, (A 2a)

b+
M =

1√
2 − sM

, bM = sgn(ωM )
√

1 − sMb+
M, b−

M = 0, (A 2b)

b±
q = sgn(1 + sq)

(1 ± sq)
√

�q + 1/2 ± 1/2

Dq

, bq = sgn(ωq)

√
(2�q + 1 + sq)

(
1 − s2

q

)
Dq

,

(A 2c)
where M ∈ {M−, M+} and q ∈ {R1, G

−
1 , G+

1 , . . . , R�, G
−
� , G+

� , . . .}. The quantity
sj = k/ωj is the ‘zonal slowness’ of the wave j and

Dq =
√

4�q + 2 + 3sq − s3
q .
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The spectrum of the equatorial waves consists of a Kelvin wave of frequency

ωK = k, (sK = 1, �K = −1), (A 3)

eastward and westward MRG waves with frequencies

ωM± = ± 1√
1 − sM±

, (|sM± | < 1, �M± = 0) (A 4)

and Rossby and gravity waves, whose frequencies satisfy

ω2
q =

sq + 2�q + 1

1 − s2
q

. (A 5)

The zonal slowness of the gravity waves lies in the range (−1, 1), while for the Rossby
waves the slowness is always negative.

The operator H1 is

H1 =

⎛
⎝ky −i 0

0 ky 0
0 0 ky

⎞
⎠ , (A 6)

and the coefficients γjn are given by

γjn = 〈j | H1 |n〉 ≡
∫

dy · · · =
1√
2

(
δ�j ,�n−1Γ

− + δ�j ,�n+1Γ
+
)
, (A 7)

where

Γ − = −bnb
+,∗
j + k

(
(�n + 1)1/2 b+,∗

j b+
n + �1/2

n b∗
j bn + (�n − 1)1/2 b−,∗

j b−
n

)
, (A 8a)

Γ + = −bnb
−,∗
j + k

(
(�n + 2)1/2 b+,∗

j b+
n + (�n + 1)1/2 b∗

j bn + �1/2
n b−,∗

j b−
n

)
. (A 8b)

For the zonally symmetric case k = 0 only the first terms in the expressions (A 8) are
non-zero.
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